Preliminary examination and data collection were performed employing Siemens CCD and $P 4$ automated single-crystal X-ray diffractometers using graphite-monochromated Mo $K \alpha$ radiation ($\lambda=0.71073 \AA$). In the case of the CCD data set [for (3a)], ω-scan and double-pass methods were used for data collection. The first 50 frames were recollected at the end of the data collection to monitor crystal decay. SADABS correction (Blessing, 1995) was applied to the raw data. The structures were solved by direct methods. The non-H atoms were refined (least squares) anisotropically to convergence. H atoms were treated using an appropriate riding model $[\mathrm{C}-\mathrm{H}=$ $0.94 \AA$ and $U(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$, or, for methyl H atoms, $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U(\mathrm{H})=1.5 U_{\mathrm{eq}}$ (carrier)].

Data collection: SMART (Siemens, 1996b) for (3a); XSCANS (Siemens, 1996c) for ($4 b$). Cell refinement: SAINT (Siemens, 1996a) for ($3 a$); XSCANS for ($4 b$). Data reduction: SAINT for (3a); SHELXTL-Plus (Sheldrick, 1995) for (4b). For both compounds, program(s) used to solve structures: SHELXTL-Plus; program(s) used to refine structures: SHELXTL-Plus; molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus.

We thank the Council of Scientific and Industrial Research, Government of India (MG, SD and MVG), the Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India (MVG), NSF (CHE9101834), Missouri Research Board, Center for Molecular Electronics and Department of Chemistry of the University of Missouri-St. Louis (NPR), and the Office of the Basic Energy Sciences of the US Department of Energy (MVG, in part), for the financial support of this work. This is contribution No. RRLT-PRU-72 from the Regional Research Laboratory, Trivandrum, India, and No. NDRL-4010 from the Notre Dame Radiation Laboratory, USA.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1077). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
George, M., Asokan, C. V. \& Das, S. (1997). Unpublished results.
Jones, R., Rattray, A. G. M., Scheffer, J. R. \& Trotter, J. (1997). Acta Cryst. C53, 1162-1164.
Peseke, K., Zahn, K. \& Michalik, M. (1994). J. Prakt. Chem. 336, 357-360.
Sheldrick, G. M. (1995). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996a). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996b). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996c). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Singer, K. D., Lalama, S. L., Sohn, J. E. \& Small, R. D. (1987). Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1, edited by D. S. Chemla \& J. Zyss, pp. 437-469. New York: Academic Press.

Acta Cryst. (1998). C54, 1036-1038

N, N^{\prime}-Methylenebis[(S)-5-phenyloxazolidine]

Pascale Lemoine, ${ }^{a}$ Bernard Viossat, ${ }^{b}$ Pierre-Guy
Martin c and David J. Attren ${ }^{c}$
${ }^{a}$ Laboratoire de Physique, Faculté des Sciences Pharmaceutiques et Biologiques de Paris V, 4, avenue de l'Observatoire, 75270 Paris CEDEX 06, France, ${ }^{\text {b }}$ Laboratoire de Chimie Générale, Faculté de Pharmacie, 34, rue du Jardin des Plantes, BP 199, 86005 Poitiers CEDEX, France, and 'Laboratoire de Chimie Thérapeutique associé au CNRS, Faculté des Sciences Pharmaceutiques et Biologiques de Paris V, 4, avenue de l'Observatoire, 75270

Paris CEDEX 06, France. E-mail: lemoine@pharmacie.univparis5.fr
(Received I4 July 1997; accepted 6 November 1997)

Abstract

The $2: 3$ condensation product, $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$, formed by reaction of (S)-(+)-2-amino-1-phenylethanol with formaldehyde has an N, N^{\prime}-methylenebis(oxazolidine) heterocyclic skeleton. The two oxazolidine rings have envelope-type conformations, with their N atoms displaced by 0.604 (5) and 0.537 (6) \AA from the mean planes formed by the remaining four atoms of each ring. The dihedral angle between the two planes is $110.2(2)^{\circ}$.

Comment

The condensation product of (\pm)-2-amino-1-phenylethanol with formaldehyde in a respective molar ratio of 2:3 was first described as a synthetic reagent in 1994 and was assumed to have an N, N^{\prime}-methylenebis(oxazolidine) heterocyclic skeleton (Pevarello et al., 1994). While it has been shown that a similar aminoalcohol, (-)-norephedrine, with formaldehyde gives a 2:3 adduct which has this type of structure (Engel et al., 1982), another related aminoalcohol, (-)-2-amino-2-phenylethanol, gives a quite different isomeric 2:3 adduct, having a 1,6 -diaza-3,8-dioxabicyclo[4.4.1]undecane skeleton (Aitken et al., 1991). This latter observation casts some doubt on the assumption of the structure of the title compound, (I), and since firm knowledge of its molecular structure is necessary in order to understand its chemical reactivity, confirmation was sought by an X-ray diffraction study.

(I)

The title compound consists of two 5-phenyloxazolidine rings with an $-\mathrm{NCH}_{2} \mathrm{~N}$ - bridge. Corresponding bond angles and distances in each of the
two ring systems are very similar and are comparable with those observed for N, N^{\prime}-methylenebis(4-methyl-5phenyloxazolidine) (Engel et al., 1982). The molecules have almost perfect C_{2} symmetry about the C6 atom. The conformation of the oxazolidine rings is of the envelope type, with atom N 10.604 (5) \AA from plane $P 3$ (defined by atoms C2, O3, C4 and C5) and atom N7 0.537 (6) A from plane $P 4$ (defined by atoms C8, O9, C10 and C11). P3 makes a dihedral angle of 110.2 (2) ${ }^{\circ}$ with $P 4$. The endocyclic torsion angles N1$\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 4$ and $\mathrm{N} 7-\mathrm{C} 8-\mathrm{O} 9-\mathrm{C} 10$ are -26.3(4) and $-15.6(4)^{\circ}$, respectively. The dihedral angles (Ito \& Sugawara, 1983) between planes P1 (C12-C17) and P3 on the one hand, and planes $P 2$ (C18-C23) and $P 4$ on the other hand, are 79.7 (2) and $18.8(2)^{\circ}$, respectively.

Fig. 1. Perspective view of N, N^{\prime}-methylencbis(5-phenyloxazolidine). Displacement ellipsoids have been scaled to enclose regions of 50% probability.

In the crystal structure, the packing is due mainly to van der Waals interactions [the smallest value is 3.440 (5) \AA for $\mathrm{N} 1 \cdots \mathrm{C} 5^{\mathrm{i}}$; symmetry code: (i) $x-\frac{1}{2}$, $\left.\frac{1}{2}-y, 1-z\right]$ and all intermolecular contacts agree with those predicted from radii-sum rules.

Experimental

The title compound was prepared according to the literature procedure of Pevarello et al. (1994), except that (S)-(+)-2-amino-1-phenylethanol (Meyers \& Slade, 1980) was used as starting material instead of the racemic compound. A single crystal was grown by slow evaporation of a heptane-benzene solution.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=310.39$
Orthorhombic
$P 22_{1} 2_{2}$
$a=5.960$ (3) \AA
$b=8.312(5) \AA$
$c=32.80$ (3) \AA
$V=1624.7(18) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=1.269 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.24 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m t}$ measured by flotation in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{12}$

Data collection

Siemens $P 3$ diffractometer $\omega-2 \theta$ scans
Absorption correction: none 3092 measured reflections 2858 independent reflections 1573 reflections with
$I>2 \sigma(I)$
$R_{\mathrm{int}}=0.066$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.200$
$S=1.078$
2808 reflections
228 parameters
$\theta_{\text {max }}=25.04^{\circ}$
$h=-7 \rightarrow 7$
$k=0 \rightarrow 9$
$l=0 \rightarrow 38$
3 standard reflections every 60 reflections
intensity decay: 2%
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\text {max }}=0.124 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.175$ e \AA^{-3}
Extinction correction: none
Scattering factors from
International Tables for
Crystallography (Vol. C)

H atoms: see below

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0386 P)^{2}\right. \\
&+0.0232 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{i}^{2}\right) / 3
\end{aligned}
$$

Table 1. Selected geometric parameters ($\AA,{ }^{\circ}$)

N1-C2	1.438 (5)	C6-N7	1.460)(5)
$\mathrm{Ni}-\mathrm{C} 5$	1.458 (4)	N7-C8	1.438 (5)
Ni-C6	1.464 (4)	N7-C11	1.461 (4)
$\mathrm{C} 2-\mathrm{O} 3$	1.444 (4)	C8-O9	1.431 (5)
O.3-C4	1.441 (4)	O9-C10	1.432 (4)
C4-C12	1.501 (5)	C10-C18	1.503 (5)
$\mathrm{C} 4-\mathrm{C} 5$	1.551 (5)	C10-C11	1.543 (5)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5$	99.8 (3)	C8-N7-C6	113.2 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	112.8 (3)	$\mathrm{C} 8-\mathrm{N} 7-\mathrm{Cl1}$	101.6 (3)
$\mathrm{C5}-\mathrm{NJ}-\mathrm{C} 6$	111.8(3)	C6-N7-C11	110.7 (3)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 3$	107.4 (3)	O9-C8-N77	109.0 (3)
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 2$	1(1).1(3)	C8-O9-C10	107.6(3)
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{Cl} 2$	112.2 (3)	O9-Cl(\%-C18	111.9 (3)
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5$	102.9 (3)	O9- $\mathrm{Cl}^{(10-\mathrm{C} 11}$	103.8 (3)
C12-C4-C5	115.7(3)	$\mathrm{C18-C10-C11}$	115.9(3)
N - $\mathrm{C} 5-\mathrm{C} 4$	104.6(3)	N7-C11-C10	103.6 (3)
$\mathrm{N} 7-\mathrm{C} 6-\mathrm{Ni}$	109.6 (3)		
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 2-\mathrm{NI}$	-26.3 (4)	$\mathrm{N} 7-\mathrm{C} 8-\mathrm{O}-\mathrm{Cl} \mathrm{Cl}^{\text {a }}$	-15.6(4)
$\mathrm{O} 3-\mathrm{C}_{2}-\mathrm{N} 1-\mathrm{C} 5$	41.4 (4)	$\mathrm{O9}-\mathrm{C10-C11-N7}$	28.9 (4)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	-39.9 (4)	$\mathrm{C} 8-\mathrm{O} 9-\mathrm{C} 10-\mathrm{Cl1}$	-8.5 (4)
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4-\mathrm{O} 3$	25.2 (4)	$\mathrm{C} 8-\mathrm{N} 7-\mathrm{Cll}-\mathrm{ClO}$	-37.3(4)
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 2$	0.2 (4)	$\mathrm{O9}-\mathrm{C} 8-\mathrm{N} 7-\mathrm{Cll}$	33.7 (4)

Refinement was on F^{2} for all reflections except for 50 with very negative F^{2} or flagged for potential systematic errors. The H atoms were placed in geometrically calculated positions and their positions were allowed to refine with $\mathrm{C}-\mathrm{H}$ distance restraints. A common isotropic displacement parameter was refined for each type of H atom (i.e. $\mathrm{CH}, \mathrm{CH}_{2}$, etc.). The choice of the S, S enantiomer for the refinement was based on the known absolute configuration of the synthetic precursor, (S)-(+)-2-amino-1-phenylethanol.

Data collection: P3 (Siemens, 1990). Cell refinement: $P 3$. Data reduction: $P 3$. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: CAMERON (Watkin et al., 1996). Software used to prepare material for publication: SHELXL93.

[^0]
References

Aitken, D. J., Guillaume, D., Husson. H.-P.. Chiaroni, A. \& Riche, C. (1991). J. Heterocycl. Chem. 28, 705-709.

Engel, V. J., Trömer, H.-G. \& Sheldrick, W. S. (1982). Chem. Ztg. 106, 427-429.
Ito, T. \& Sugawara, Y. (1983). BP7C. Best Planes Program. Research Institute for Physics and Chemistry, Wako-Shi, Saitama 351, Japan.
Meyers, A. I. \& Slade, J. (1980). J. Org. Chem. 45, 2785-2791.
Pevarello, P., Pinciroli, V. \& Varasi, M. (1994). J. Heterocycl. Chem. 31, 1089-1091.
Sheldrick, G. M. (1985). SHELXS86. Program for Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen. Germany.
Siemens (1990). P3 Diffractometer Control Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

Acta Cryst. (1998). C54, 1038-1040

2^{\prime}-[1-(4-Fluorophenyl)ethyl]isonicotino- κN -hydrazide-Cyanoborane

Guseppe Bruno, ${ }^{a}$ Rosanna Maccarı, ${ }^{b}$ Francesco Nicoló, ${ }^{a}$ Rosaria Ottaná, ${ }^{b}$ Manuela Panzalorto, ${ }^{a}$ Rosario Scopelliti ${ }^{a}$ and Maria Gabriella Vigorita ${ }^{b}$
${ }^{a}$ Dip. di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universitá di Messina, 98166 Vill. Sant'Agata, Messina, Italy, and ${ }^{b}$ Dip. Farmaco-Chimico, Universitá di Messina, 98168 Viale Annunziata, Messina, Italy. E-mail: bruno@medif0.unime.it

(Received 5 June 1997: accepted 27 January 1998)

Abstract

The title compound, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BFN}_{4} \mathrm{O}$, is a cyanoborane adduct showing a butterfly-like conformation, with the fluorophenyl moiety disordered.

Comment

Interest in cyanoborane adducts stems from their extraordinary biological activities, i.e. anti-inflammatory (Hall et al., 1980), anti-neoplastic (Sood et al., 1991) and hypolipidemic (Hall et al., 1981). By using known procedures (Calabretta et al., 1991), an extensive series of cyanoborane adducts of aliphatic and aromatic isonicotinohydrazides has recently been prepared (Vigorita et al., 1998). In particular, cyanoboranes derived from the primary antitubercular agent isoniazid (INH) should be of interest as potential anti-infective agents, in view of the current re-emergence of tuberculosis
and other AIDS-associated microbacterial diseases. The synthesis of the title isonicotinohydrazide-cyanoborane adduct, (I), was carried out by the treatment of 4^{\prime}-fluoroacetophenone isonicotinoylhydrazone with an excess of sodium cyanoborohydride at $\mathrm{pH} 3-5$ in anhydrous tetrahydrofuran.

However, since the title compound possesses at least two basic N atoms that might be in competition as sites coordinating $\mathrm{BH}_{2} \mathrm{CN}$ (Calabretta et al., 1991), the present X-ray diffraction analysis was required to determine the structure. This analysis shows that the packing is mainly determined by normal van der Waals interactions and intermolecular hydrogen bonds involving O1 and N1 (Table 2). Intermolecular hydro-gen-bond interactions also occur in the disordered part of the molecule and involve the F atom ($\mathrm{H} \cdots \mathrm{F}$ distances range from 2.43 to $2.98 \AA$, whereas $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ angles range from 105 to 164°).

The cyanoborane group shows the typical tetrahedral geometry for the B atom $\left[\mathrm{C} 1-\mathrm{B} 1-\mathrm{N} 2=109.2(3)^{\circ}\right]$, and distances and angles are in good agreement with those reported in the literature (Ferguson et al., 1990). The angle between the $\mathrm{N} 2-\mathrm{B} 1-\mathrm{C} 1-\mathrm{N} 1$ moiety and the pyridine ring is $55.9(2)^{\circ}$. The interplanar angle between the pyridine system and the O1-C7-N3-N4 moiety is $11.1(1)^{\circ}$, showing that π-electron delocalization is not wide-ranging, since it is confined to the pyridine ring. The mutual orientation of the aromatic ring and the hydrazonic moiety is due to the presence of a weak intramolecular hydrogen-bond interaction involving C5 and O 1 (Table 2).

Fig. 1. View of the title compound showing the atomic numbering scheme, with displacement ellipsoids at 50% probability for non-H atoms. For clarity. only one position of the disordered moiety has been labelled.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: LNIO28). Services for accessing these data are described at the back of the journal.

